题目内容
已知数列{an}中a1=2,an+1=2-
,数列{bn}中bn=
,其中 n∈N*.
(Ⅰ)求证:数列{bn}是等差数列;
(Ⅱ)设Sn是数列{
bn}的前n项和,求
+
+…+
;
(Ⅲ)设Tn是数列{ (
)n•bn }的前n项和,求证:Tn<
.
| 1 |
| an |
| 1 |
| an-1 |
(Ⅰ)求证:数列{bn}是等差数列;
(Ⅱ)设Sn是数列{
| 1 |
| 3 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
(Ⅲ)设Tn是数列{ (
| 1 |
| 3 |
| 3 |
| 4 |
(Ⅰ)bn+1=
=
=
,而 bn=
,
∴bn+1-bn=
-
=1.n∈N*
∴{bn}是首项为b1=
=1,公差为1的等差数列.(5分)
(Ⅱ)由(Ⅰ)可知bn=n,
bn=
n. ∴Sn=
(1+2+…+n)=
,
于是
=
=6(
-
),
故有
+
+…+
=6(1-
+
-
+…+
-
)
=6(1-
)=
.(9分)
(Ⅲ)证明:由(Ⅰ)可知 (
)n•bn=n•(
)n,
则Tn=1•
+2•(
)2+…+n•(
)n.∴
Tn=1•(
)2+2•(
)3+…+(n-1)(
)n+n•(
)n+1.
则
Tn=
+(
)2+(
)3+…+(
)n-n•(
)n+1=
[1-(
)n]-n•(
)n+1,
∴Tn=
-
(
)n-1-
•(
)n<
. (14分)
| 1 |
| an+1-1 |
| 1 | ||
1-
|
| an |
| an-1 |
| 1 |
| an-1 |
∴bn+1-bn=
| an |
| an-1 |
| 1 |
| an-1 |
∴{bn}是首项为b1=
| 1 |
| a1-1 |
(Ⅱ)由(Ⅰ)可知bn=n,
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| n(n+1) |
| 6 |
于是
| 1 |
| Sn |
| 6 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
故有
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=6(1-
| 1 |
| n+1 |
| 6n |
| n+1 |
(Ⅲ)证明:由(Ⅰ)可知 (
| 1 |
| 3 |
| 1 |
| 3 |
则Tn=1•
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
则
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
∴Tn=
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 3 |
| n |
| 2 |
| 1 |
| 3 |
| 3 |
| 4 |
练习册系列答案
相关题目