题目内容
设数列{an}的前n项的和为Sn,已知| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| n |
| n+1 |
(1)求S1,S2及Sn;
(2)设bn=(
| 1 |
| 2 |
| n |
| k=1 |
| 1 |
| m |
| 16 |
| 3 |
分析:(1)n=1时,S1=2,n=2时,S2=6,由
+
+…+
=
,知
+
+…+
=
,由此能求出Sn.
(2)由Sn=n(n+1),知an=Sn-Sn-1=2n,a1=2,an=2n,n∈N+,所以bn=(
)n.由
=
,知数列{bn}是等比数列,由 b1+b2+…+bn=
=
(1-
)和
(1-
)随n的增大而增大,知
≤ b1+b2+…+bn<
,由此能求出实数m的取值范围.
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| n |
| n+1 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn-1 |
| n-1 |
| n |
(2)由Sn=n(n+1),知an=Sn-Sn-1=2n,a1=2,an=2n,n∈N+,所以bn=(
| 1 |
| 4 |
| bn+1 |
| bn |
| 1 |
| 4 |
| ||||
1-
|
| 1 |
| 3 |
| 1 |
| 4n |
| 1 |
| 3 |
| 1 |
| 4n |
| 1 |
| 4 |
| 1 |
| 3 |
解答:解:(1)依题意,n=1时,S1=2,n=2时,S2=6,
∵
+
+…+
=
,①
n≥2时,
+
+…+
=
,
∴Sn=n(n+1)(n∈N+),
(2)由(1)知Sn=n(n+1),
当n≥2时,an=Sn-Sn-1=2n,
∵a1=2,∴an=2n,n∈N+,
∴bn=(
)n.
∵
=
,∴数列{bn}是等比数列,
则 b1+b2+…+bn=
=
(1-
).
∵
(1-
)随n的增大而增大,
∴
≤ b1+b2+…+bn<
,
依条件,得
,
即
,∴m<0或m≥5.
∵
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| n |
| n+1 |
n≥2时,
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn-1 |
| n-1 |
| n |
∴Sn=n(n+1)(n∈N+),
(2)由(1)知Sn=n(n+1),
当n≥2时,an=Sn-Sn-1=2n,
∵a1=2,∴an=2n,n∈N+,
∴bn=(
| 1 |
| 4 |
∵
| bn+1 |
| bn |
| 1 |
| 4 |
则 b1+b2+…+bn=
| ||||
1-
|
| 1 |
| 3 |
| 1 |
| 4n |
∵
| 1 |
| 3 |
| 1 |
| 4n |
∴
| 1 |
| 4 |
| 1 |
| 3 |
依条件,得
|
即
|
点评:本题考查数列前n项和的求法和数列与不等式的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件.
练习册系列答案
相关题目