题目内容
【题目】对于函数f(x)=
,有下列5个结论: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函数y=f(x)在区间[4,5]上单调递增;
③f(x)=2kf(x+2k)(k∈N+),对一切x∈[0,+∞)恒成立;
④函数y=f(x)﹣ln(x﹣1)有3个零点;
⑤若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1 , x2 , 则x1+x2=3.
则其中所有正确结论的序号是 . (请写出全部正确结论的序号)
【答案】①④⑤
【解析】解:f(x)=
的图象如图所示:①∵f(x)的最大值为1,最小值为﹣1,
∴任取x1、x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2恒成立,故①正确;②函数在区间[4,5]上的单调性和[0,1]上的单调性相同,则函数y=f(x)在区间[4,5]上不单调;故②错误;③f(
)=2f(
+2)=4f(
+4)=6f(
+6)≠8f(
+8),故不正确;故③错误,④如图所示,函数y=f(x)﹣ln(x﹣1)有3个零点;故④正确,⑤当1≤x≤2时,函数f(x)关于x=
对称,若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1,x2,
则
=
,则x1+x2=3成立,故⑤正确,
所以答案是:①④⑤.
![]()
【考点精析】利用命题的真假判断与应用对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
练习册系列答案
相关题目