题目内容

设数列{an}是等比数列,a1=C2m3m-2•Pm-11(m∈N*),公比q是(x+
1
4x2
)4
的展开式中的第二项(按x的降幂排列).
(1)求常数m的值;
(2)用n、x表示数列{an}的前项和Sn
(3)若Tn=Cn1S1+Cn2S2+…+CnnSn,用n、x表示Tn
(1)由排列数、组合数的性质,得到不等式:
2m≥3m-2
m-1≥1
,可得2≤m≤2
∴m=2;
(2)由(1)知m=2,
(x+
1
4x2
)
4
的展开式中的同项公式知 T2=
C14
x4-1(
1
4x2
)=x


∴an=xn-1
∴由等比数列的求和公式得:Sn=
n,x=1
1-xn
1-x
,x≠1
 
(3)当x=1时,Sn=n,
所以:Tn=Cn1+2Cn2+3Cn3+…+nCnn=0Cn0+1Cn1+2Cn2+3Cn3+…+nCnn
又∵Tn=nCnn+(n-1)Cnn-1+(n-2)Cnn-2+…+Cn1+0Cn0
∴上两式相加得:2Tn=n(Cn0+Cn1+Cn2+…+Cnn)=n•2n
∴Tn=n•2n-1
当x≠1时,Sn=
1-xn
1-x

所以有:
 Tn=
1-x
1-x
Cn1
+
1-x2
1-x
Cn2
+… +
1-x n
1-x
Cnn

 
=
1
1-x
[(
C1n
+
C2n
+…+
Cnn
)-(x
C1n
+x2
C2n
+…+xn
Cnn
)]

 
=
1
1-x
[2n-(1+x)n],

Tn=
n•2n-1,x=1
2n-(1+x)n
1-x
,x≠1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网