ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+bx+cºÍ¡°Î±¶þ´Îº¯Êý¡±g£¨x£©=ax2+bx+clnx£¨abc¡Ù0£©£®
£¨1£©Ö¤Ã÷£ºÖ»Òªa£¼0£¬ÎÞÂÛbÈ¡ºÎÖµ£¬º¯Êýg£¨x£©ÔÚ¶¨ÒåÓòÄÚ²»¿ÉÄÜ×ÜΪÔöº¯Êý£»
£¨2£©ÔÚͬһº¯ÊýͼÏóÉÏÈÎÒâÈ¡²»Í¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ïß¶ÎABÖеãΪC£¨x0£¬y0£©£¬¼ÇÖ±ÏßABµÄбÂÊΪk£¬
¢Ù¶ÔÓÚ¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¬ÇóÖ¤£ºk=f¡ä£¨x0£©£»
¢Ú¶ÔÓÚ¡°Î±¶þ´Îº¯Êý¡±g£¨x£©=ax2+bx+clnx£¬ÊÇ·ñÓТÙͬÑùµÄÐÔÖÊ£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨1£©Ö¤Ã÷£ºÖ»Òªa£¼0£¬ÎÞÂÛbÈ¡ºÎÖµ£¬º¯Êýg£¨x£©ÔÚ¶¨ÒåÓòÄÚ²»¿ÉÄÜ×ÜΪÔöº¯Êý£»
£¨2£©ÔÚͬһº¯ÊýͼÏóÉÏÈÎÒâÈ¡²»Í¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ïß¶ÎABÖеãΪC£¨x0£¬y0£©£¬¼ÇÖ±ÏßABµÄбÂÊΪk£¬
¢Ù¶ÔÓÚ¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¬ÇóÖ¤£ºk=f¡ä£¨x0£©£»
¢Ú¶ÔÓÚ¡°Î±¶þ´Îº¯Êý¡±g£¨x£©=ax2+bx+clnx£¬ÊÇ·ñÓТÙͬÑùµÄÐÔÖÊ£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨1£©Èç¹ûx£¾0£¬g£¨x£©ÎªÔöº¯Êý£¬Ôò
g¡ä£¨x£©=2ax+b+
=
£¾0(i)ºã³ÉÁ¢£®
¡à2ax2+bx+c£¾0£¨ii£©ºã³ÉÁ¢
¡ßa£¼0£¬Óɶþ´Îº¯ÊýµÄÐÔÖÊ£¬£¨ii£©²»¿ÉÄܺã³ÉÁ¢
Ôòº¯Êýg£¨x£©²»¿ÉÄÜ×ÜΪÔöº¯Êý£®
£¨2£©¢Ù¶ÔÓÚ¶þ´Îº¯Êý£º
k=
=
=2ax0+b
ÓÉf¡ä£¨x£©=2ax+b¹Êf¡ä£¨x0£©=2ax0+b
¼´k=f¡ä£¨x0£©
£¨2£©¢Ú
²»·ÁÉèx2£¾x1£¬¶ÔÓÚα¶þ´Îº¯Êýg£¨x£©=ax2+bx+clnx=f£¨x£©+clnx-c£¬
k=
=
Èç¹ûÓТٵÄÐÔÖÊ£¬Ôòg¡ä£¨x0£©=k
¡à
=
£¬c¡Ù0
¼´¡à
=
£¬
Áît=
£¬t£¾1£¬Ôò
=
Éès£¨t£©=lnt-
£¬Ôòs¡ä(t)=
-
=
£¾0
¡às£¨t£©ÔÚ£¨1£¬+¡Þ£©ÉϵÝÔö£¬
¡às£¨t£©£¾s£¨1£©=0
¡àg¡ä£¨x0£©¡Ùk¡à¡°Î±¶þ´Îº¯Êý¡°g£¨x£©=ax2+bx+clnx²»¾ßÓТٵÄÐÔÖÊ£®
g¡ä£¨x£©=2ax+b+
| c |
| x |
| 2ax2+bx+c |
| x |
¡à2ax2+bx+c£¾0£¨ii£©ºã³ÉÁ¢
¡ßa£¼0£¬Óɶþ´Îº¯ÊýµÄÐÔÖÊ£¬£¨ii£©²»¿ÉÄܺã³ÉÁ¢
Ôòº¯Êýg£¨x£©²»¿ÉÄÜ×ÜΪÔöº¯Êý£®
£¨2£©¢Ù¶ÔÓÚ¶þ´Îº¯Êý£º
k=
| f(x2)-f(x1) |
| x2- x1 |
| a(x22-x12)+b(x2-x1) |
| x2-x1 |
ÓÉf¡ä£¨x£©=2ax+b¹Êf¡ä£¨x0£©=2ax0+b
¼´k=f¡ä£¨x0£©
£¨2£©¢Ú
²»·ÁÉèx2£¾x1£¬¶ÔÓÚα¶þ´Îº¯Êýg£¨x£©=ax2+bx+clnx=f£¨x£©+clnx-c£¬
k=
| g(x2)-g(x1) |
| x2-x1 |
f(x2)-f(x1)+cln
| ||
| x2-x1 |
Èç¹ûÓТٵÄÐÔÖÊ£¬Ôòg¡ä£¨x0£©=k
¡à
cln
| ||
| x2-x1 |
| c |
| x0 |
¼´¡à
ln
| ||
| x2-x1 |
| 2 |
| x1+x2 |
Áît=
| x2 |
| x1 |
| lnt |
| t-1 |
| 2 |
| t+1 |
Éès£¨t£©=lnt-
| 2t-2 |
| t+1 |
| 1 |
| t |
| 2(t+1)-2(t-1) |
| (t+1)2 |
| (t-1)2 |
| t(t+1)2 |
¡às£¨t£©ÔÚ£¨1£¬+¡Þ£©ÉϵÝÔö£¬
¡às£¨t£©£¾s£¨1£©=0
¡àg¡ä£¨x0£©¡Ùk¡à¡°Î±¶þ´Îº¯Êý¡°g£¨x£©=ax2+bx+clnx²»¾ßÓТٵÄÐÔÖÊ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿