题目内容
已知函数f(x)=
sin2x+sinxcosx-
(x∈R).
(Ⅰ)求f(
)的值;
(Ⅱ)若x∈(0,
),求f(x)的最大值.
| 3 |
| ||
| 2 |
(Ⅰ)求f(
| π |
| 4 |
(Ⅱ)若x∈(0,
| π |
| 2 |
(本小题满分13分)
(Ⅰ)f(
)=
sin2
+sin
cos
-
=
. …(4分)
(Ⅱ)f(x)=
+
sin2x-
=
sin2x-
cos2x=sin(2x-
). …(6分)
∵0<x<
,
∴-
<2x-
<
.
∴当2x-
=
时,即x=
时,f(x)的最大值为1. …(8分)
(Ⅰ)f(
| π |
| 4 |
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
| 1 |
| 2 |
(Ⅱ)f(x)=
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 3 |
∵0<x<
| π |
| 2 |
∴-
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
∴当2x-
| π |
| 3 |
| π |
| 2 |
| 5π |
| 12 |
练习册系列答案
相关题目