题目内容
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13(Ⅰ)求{an}、{bn}的通项公式;
(Ⅱ)求数列{
| an | bn |
分析:(Ⅰ)设{an}的公差为d,{bn}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{an}、{bn}的通项公式.
(Ⅱ)数列{
}的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和Sn.
(Ⅱ)数列{
| an |
| bn |
解答:解:(Ⅰ)设{an}的公差为d,{bn}的公比为q,则依题意有q>0且
解得d=2,q=2.
所以an=1+(n-1)d=2n-1,bn=qn-1=2n-1.
(Ⅱ)
=
.Sn=1+
+
+…+
+
,①2Sn=2+3+
+…+
+
,②
②-①得Sn=2+2+
+
+…+
-
,=2+2×(1+
+
+…+
)-
=2+2×
-
=6-
.
|
解得d=2,q=2.
所以an=1+(n-1)d=2n-1,bn=qn-1=2n-1.
(Ⅱ)
| an |
| bn |
| 2n-1 |
| 2n-1 |
| 3 |
| 21 |
| 5 |
| 22 |
| 2n-3 |
| 2n-2 |
| 2n-1 |
| 2n-1 |
| 5 |
| 2 |
| 2n-3 |
| 2n-3 |
| 2n-1 |
| 2n-2 |
②-①得Sn=2+2+
| 2 |
| 2 |
| 2 |
| 22 |
| 2 |
| 2n-2 |
| 2n-1 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-2 |
| 2n-1 |
| 2n-1 |
1-
| ||
1-
|
| 2n-1 |
| 2n-1 |
| 2n+3 |
| 2n-1 |
点评:本题主要考查等差数列的通项公式和用错位相减法求和.
练习册系列答案
相关题目
设{an}是等差数列,a1+a3+a5=9,a6=9.则这个数列的前6项和等于( )
| A、12 | B、24 | C、36 | D、48 |