题目内容

已知等差数列{an}的前n项和为Sn,且S2=10,S5=55,则过点P(a,an)(n∈N*)和Q(n+2,an+2)(n∈N*)的直线的一个方向向量坐标可以是(  )
分析:根据所给的等差数列的前几项的和,得到这个数列的首项和公差,写出数列的通项,写出要用的两个点的坐标,做出直线的斜率,观察所给的四个选项找到纵标是横标的四倍的选项.
解答:解::∵等差数列{an}的前n项和为Sn,且S2=10,S5=55,
∴a1+a2=10,a3=11,∴a1=3,d=4,∴an=4n-1,an+2=4n+7,
∴P(n,4n-1),Q(n+2,4n+7).
∴直线PQ的斜率是
4n+7-(4n-1)
n+2-n
=4,
在四个选项中可以作为这条直线的方向向量的是 (-
1
3
,-
4
3
)

故选D.
点评:本题考查解析几何与数列的综合题目,这种题目的运算量不大,是一个基础题,题目中涉及到一条直线的方向向量,这个概念有的同学可能忘记,注意当方向向量横标是1时,纵标就是直线的斜率,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网