题目内容
9.已知奇函数y=f(x)在x<0时是减函数,求证:y=f(x)在x>0时也是减函数.分析 ?0<x1<x2,则0>-x1>-x2,由于奇函数y=f(x)在x<0时是减函数,可得f(-x1)<f(-x2),化简即可证明.
解答 解:?0<x1<x2,则0>-x1>-x2,
∵奇函数y=f(x)在x<0时是减函数,
∴f(-x1)<f(-x2),
即-f(x1)<-f(x2),
∴f(x1)>f(x2),
∴y=f(x)在x>0时也是减函数.
点评 本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目