题目内容
已知数列{an}满足:a1=
,3an+1=an+2.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:bn=n(an-1),求数列{bn}的前n项和Sn;
(3)求证:
+
+
+…+
<
.
| 5 |
| 3 |
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:bn=n(an-1),求数列{bn}的前n项和Sn;
(3)求证:
| 1 |
| 3•a1 |
| 1 |
| 32•a2 |
| 1 |
| 33•a3 |
| 1 |
| 3n•an |
| 1 |
| 2 |
分析:(1)由3an+1=an+2,变形为an+1-1=
(an-1),可得数列{an-1}为等比数列,利用其通项公式即可得出;
(2)利用“错位相减法”即可得出;
(3)利用“放缩法”可得
=
<
,再利用等比数列的前n项和公式即可证明.
| 1 |
| 3 |
(2)利用“错位相减法”即可得出;
(3)利用“放缩法”可得
| 1 |
| 3n•an |
| 1 |
| 2+3n |
| 1 |
| 3n |
解答:解:(1)由3an+1=an+2,可得an+1-1=
(an-1),又a1-1=
,
∴数列{an-1}为等比数列,
∴an-1=
•(
)n-1=
.
故an=
+1=
=1+2•(
)n.
(2)由(1)知bn=n(an-1)=2n•(
)n
∴Sn=2•
+4•(
)2+6•(
)3+…+2n•(
)n①
Sn=2•(
)2+4•(
)3+…+2(n-1)•(
)n+2n•(
)n+1②
由①-②得:
Sn=2•
+2•(
)2+2•(
)3+…+2(n-1)•(
)n-2n•(
)n+1
=1-
•(
)n
∴Sn=
-
•(
)n.
(3)∵
=
<
,
∴
+
+
+…+
<
+
+…+
=
=
[1-(
)n]<
.
| 1 |
| 3 |
| 2 |
| 3 |
∴数列{an-1}为等比数列,
∴an-1=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
故an=
| 2 |
| 3n |
| 2+3n |
| 3n |
| 1 |
| 3 |
(2)由(1)知bn=n(an-1)=2n•(
| 1 |
| 3 |
∴Sn=2•
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
由①-②得:
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=1-
| 2n+3 |
| 3 |
| 1 |
| 3 |
∴Sn=
| 3 |
| 2 |
| 2n+3 |
| 2 |
| 1 |
| 3 |
(3)∵
| 1 |
| 3n•an |
| 1 |
| 2+3n |
| 1 |
| 3n |
∴
| 1 |
| 3•a1 |
| 1 |
| 32•a2 |
| 1 |
| 33•a3 |
| 1 |
| 3n•an |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
点评:本题考查了等比数列的通项公式及前n项和公式、“错位相减法”、“放缩法”等基础知识与基本技能方法,属于难题.
练习册系列答案
相关题目