题目内容
若向量
【答案】分析:由|
-
|=1,知
-2|
|•|
|cosα+
=1,由向量
,知4-4|
|cosα+
=1,所以cosα=
,由α∈[0,180°],知0≤
≤1,由此能求出|
|的取值范围.
解答:解:∵|
-
|=1,
∴
-2|
|•|
|cosα+
=1,
∵向量
,
∴4-4|
|cosα+
=1,
所以cosα=
,∵α∈[0,180°],
∴0≤
≤1,
∵
>0,∴
≤1,
∴3+|
|2≤4|
|,
即|
|2-4|
|+3≤0,
解得1≤|
|≤3.
故答案为:[1,3].
点评:本题考查平面向量和数量积的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
解答:解:∵|
∴
∵向量
∴4-4|
所以cosα=
∴0≤
∵
∴3+|
即|
解得1≤|
故答案为:[1,3].
点评:本题考查平面向量和数量积的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目