题目内容
抛物线y=-
x2上有两点A(x1,-
x
),B(x2,-
x
),且
⊥
(O为坐标原点),
=(0,-2)
.
(1)求证:
∥
;
(2)若
=-2
,求△ABO的面积.
(1)
=
-
=(-x1,-2+
x
),
=
-
=(x2-x1,-
x
+
x
).
∵
⊥
,∴
·
=x1·x2+
x
x
=0,
∴x1x2(4+x1x2)=0,
∴x1x2=0(舍)或x1x2=-4,
∴-x1[-
(x
-x
)]=
x1(x2-x1)(x2+x1)
=
(x2-x1)(x1x2+x
)
=(-2+
x
)(x2-x1).
∴(x2-x1)(-2+
x
)+x1[-
(x
-x
)]=0,
∴
∥
.
(2)
=(x1,-
x
+2),
=(x2,-
x
+2)
∵
=-2
,
∴
⇒![]()
⇒
,
∵
⊥
,
∴S△ABO=
|
||
|
=![]()
·![]()
=![]()
![]()
=3
.
练习册系列答案
相关题目