题目内容
已知公差d不为0的等差数列{an}中,a1=1,且a1,a3,a7成等比数列.
(1)求通项an及前n项和Sn;
(2)若有一新数列{bn},且bn=
,求数列{bn}的前n项和Tn.
(1)求通项an及前n项和Sn;
(2)若有一新数列{bn},且bn=
| 1 |
| anan+1 |
(1)∵a1,a3,a7成等比数列,
∴a32=a1a7,
即(1+2d)2=a1+6d,
∴4d2-2d=0,d=
,或d=0(舍去).
∴数列的通项公式an=1+
(n-1)=
n+
,
前n项和Sn,Sn=
=
n2+
n.
(2)由(1)得an=
,
∴an+1=
,
∴bn=
=
=4(
-
),
∴Tn=4(
-
+
-
+…+
-
)=4(
-
)=
.
∴a32=a1a7,
即(1+2d)2=a1+6d,
∴4d2-2d=0,d=
| 1 |
| 2 |
∴数列的通项公式an=1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
前n项和Sn,Sn=
n(1+
| ||||
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
(2)由(1)得an=
| n+1 |
| 2 |
∴an+1=
| n+2 |
| 2 |
∴bn=
| 1 |
| anan+1 |
| 4 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn=4(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 2n |
| n+2 |
练习册系列答案
相关题目