题目内容
【题目】已知函数
.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)求f(x)在区间
上的最大值和最小值及相应的x值;
【答案】(1)
;[
,
],k∈Z;(2)详见解析
【解析】
(1)利用二倍角公式和辅助角公式化简f(x)解析式,由正弦函数图像的性质即可得函数周期和单调递增区间.
(2)由正弦函数的性质可得f(x)最大值和最小值及相应的x值.
(1)∵f(x)=4sin3xcosx-2sinxcosx-
cos4x
=sin2x×(1-cos2x)-sin2x-
cos4x
=-
sin4x-
cos4x
=-
sin(4x+
),
∴函数f(x)的最小正周期T=
.
∵由2kπ+
≤4x+
≤2kπ+
,k∈Z,可得:
,k∈Z,
∴函数f(x)的单调递增区间为:[
,
],k∈Z;
(2)∵x∈[0,
],
∴4x+
,
∴sin(4x+
)∈[-
,1],
∴f(x)=-
sin(4x+
)∈[-
,
],
可得当x=
时,f(x)在区间[0,
]上的最大值为
,
当x=
时,取得最小值为
.
练习册系列答案
相关题目