题目内容

对于函数f(x),若在其定义域内存在两个实数a,b(a<b),使当x∈[a,b]时,f(x)的值域也是[a,b],则称函数f(x)为“科比函数”.若函数f(x)=k+
x+2
是“科比函数”,则实数k的取值范围                            (  )
分析:根据题意可得到:
k+
a+2
=a
k+
b+2
=b
,即方程k+
x+2
=x有两个不相等的实数根,分别画出左右两边函数:y=
x+2
和y=x-k的图象,结合图象法可得答案.
解答:解:∵函数f(x)=k+
x+2
是“科比函数”,且是增函数,
k+
a+2
=a
k+
b+2
=b

此式表明:方程k+
x+2
=x有两个不相等的实数根,
即方程
x+2
=x-k有两个不相等的实数根,
分别画出左右两边函数:y=
x+2
和y=x-k的图象,
当直线y=x-k与曲线y=
x+2
相切时,
x+2
=x-k有唯一解,解得k=-
9
4

当直线y=x-k与曲线上的点(-2,0)时,
解得k=-2;
结合图象可得:当两个函数的图象有两个不同的交点时,
实数k的取值范围是(-
9
4
,-2].
故选B.
点评:本题主要考查了函数的值域,以及函数的单调性,同时考查了数形结合的数学思想和分析问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网