题目内容
设直线kx-y+1=0被圆为参数)所截弦的中点的轨迹为C,则曲线C与直线x+y-1=0的位置关系为
A.相交
B.相切
C.相离
D.不确定
已知椭圆C:=1(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,试问直线l是否过定点?若过,求该定点的坐标.
设直线kx-y+1=0被圆O:x2+y2=4所截弦的中点的轨迹为C,则曲线C与直线x+y-1=0的位置关系为
相交
相切
相离
不确定
已知椭圆C:+=1(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上.
已知椭圆C:+=1(a>b>0)的离心率为,椭圆C上任意一点到椭圆C两个焦点的距离之和为6.
(1)求椭圆C的方程;
(2)设直线l:y=kx-2与椭圆C交于A,B两点,点P(0,1),且|PA|=|PB|,求直线l的方程.