题目内容
已知函数f(x)=(x+1)lnx﹣x+1.
(Ⅰ)若xf'(x)≤x2+ax+1,求a的取值范围;
(Ⅱ)证明:(x﹣1)f(x)≥0.
(Ⅰ)若xf'(x)≤x2+ax+1,求a的取值范围;
(Ⅱ)证明:(x﹣1)f(x)≥0.
解:(Ⅰ)函数的定义域为(0,+∞)
求导函数,可得
,
∴xf′(x)=xlnx+1,
题设xf′(x)≤x2+ax+1等价于lnx﹣x≤a,
令g(x)=lnx﹣x,则g′(x)=
.
当0<x<1时,g′(x)>0;
当x≥1时,g′(x)0,
∴x=1是g(x)的最大值点,
∴g(x)≤g(1)=﹣1.
综上,a的取值范围是[﹣1,+∞).
(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=﹣1,即lnx﹣x+1≤0;
0<x<1时,f(x)=(x+1)lnx-x+1=xlnx+(lnx﹣x+1)≤0;
当x≥1时,f(x)=lnx+(xlnx-x+1)=lnx+x(lnx+
-1)≥0
所以(x-1)f(x)≥0
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|