题目内容
已知f (x)=2sin(x+
)cos(x+
)+2
cos2(x+
)-
.
(1)化简f (x)的解析式;
(2)若0≤θ≤π,求θ使函数f (x)为偶函数;
(3)在(2)成立的条件下,求满足f (x)=1,x∈[-π,π]的x的集合.
| θ |
| 2 |
| θ |
| 2 |
| 3 |
| θ |
| 2 |
| 3 |
(1)化简f (x)的解析式;
(2)若0≤θ≤π,求θ使函数f (x)为偶函数;
(3)在(2)成立的条件下,求满足f (x)=1,x∈[-π,π]的x的集合.
(1)f(x)=sin(2x+θ)+2
×
-
=sin(2x+θ)+
cos(2x+θ)
=2sin(2x+θ+
);
(2)要使f (x)为偶函数,则必有f(-x)=f(x),
∴2sin(-2x+θ+
)=2sin(2x+θ+
),即-sin[2x-(θ+
)]=sin(2x+θ+
),
整理得:-sin2xcos(θ+
)+cos2xsin(θ+
)=sin2xcos(θ+
)+cos2xsin(θ+
)
即2sin2xcos(θ+
)=0对x∈R恒成立,
∴cos(θ+
)=0,又0≤θ≤π,
则θ=
;
(3)当θ=
时,f(x)=2sin(2x+
)=2cos2x=1,
∴cos2x=
,
∵x∈[-π,π],
∴x=±
,
则x的集合为{x|x=±
}.
| 3 |
| 1+cos(2x+θ) |
| 2 |
| 3 |
=sin(2x+θ)+
| 3 |
=2sin(2x+θ+
| π |
| 3 |
(2)要使f (x)为偶函数,则必有f(-x)=f(x),
∴2sin(-2x+θ+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
整理得:-sin2xcos(θ+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
即2sin2xcos(θ+
| π |
| 3 |
∴cos(θ+
| π |
| 3 |
则θ=
| π |
| 6 |
(3)当θ=
| π |
| 6 |
| π |
| 2 |
∴cos2x=
| 1 |
| 2 |
∵x∈[-π,π],
∴x=±
| π |
| 6 |
则x的集合为{x|x=±
| π |
| 6 |
练习册系列答案
相关题目