题目内容

举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100),已知成绩在90分以上(含90分)的学生有12名,若Φ(2)=0.9772,则此次参赛生总人数约为
526
526
分析:设出参赛人数的分数,根据分数符合正态分布,根据成绩在90分以上(含90分)的学生有12名,列出大于90分的学生的概率,成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,列出比例式,得到参赛的总人数.
解答:解:设参赛学生的分数为ξ,因为ξ~N(70,100),
由条件知,P(ξ≥90)=1-P(ξ<90)=1-φ(90)
=1-Φ (
90-70
10
)
=1-Φ(2)=1-0.9772=0.228.
这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,
∴参赛总人数约为
12
0.0228
≈526(人).
故答案为:526
点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查标准正态分布表的应用,是一个实际应用问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网