题目内容
已知等差数列{an}的前n项和为Sn,且a3=7,a5+a7=26
(1)求an及Sn;
(2)令bn=
(n∈N*)求数列{bn}的前n项和Tn.
(1)求an及Sn;
(2)令bn=
| 1 | ||
|
分析:(1)设等差数列{an}的公差为d,由题意可得关于首项和公差的方程组,解之代入通项公式和求和公式可得;(2)由(1)可知bn=
=
(
-
),由裂项相消法可得其和.
| 1 | ||
|
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)设等差数列{an}的公差为d,
则a3=a1+2d=7,a5+a7=2a1+10d=26
联立解之可得a1=3,d=2,
故an=3+2(n-1)=2n+1
Sn=3n+
×2=n2+2n;
(2)由(1)可知bn=
=
=
=
(
-
),
故数列{bn}的前n项和Tn=
(1-
+
-
+…+
-
)=
(1-
)=
则a3=a1+2d=7,a5+a7=2a1+10d=26
联立解之可得a1=3,d=2,
故an=3+2(n-1)=2n+1
Sn=3n+
| n(n-1) |
| 2 |
(2)由(1)可知bn=
| 1 | ||
|
=
| 1 |
| (2n+1)2-1 |
| 1 |
| 4n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
故数列{bn}的前n项和Tn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| n |
| 4(n+1) |
点评:本题考查等差数列的通项公式和求和公式,涉及裂项相消法求数列的和,属中档题.
练习册系列答案
相关题目