题目内容

已知实数a、b、c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a、b、c的大小关系
c≥b>a
c≥b>a
分析:利用二次函数的性质确定a,b,c的大小.
解答:解:因为c-b=4-4a+a2=(a-2)2≥0,所以c≥b.
b+c-(c-b)=6-4a+3a2-(4-4a+a2)=2a2+2,
即2b=2a2+2,所以b=a2+1,
所以b-a=a2+1-a=(a-
1
2
)
2
+
3
4
>0

所以b>a,即a、b、c的大小关系c≥b>a.
故答案为:c≥b>a.
点评:本题主要考查了利用作差法比较数的大小,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网