题目内容
已知函数f(x)=
(1)证明:函数f(x)关于点(
,
)对称.
(2)求f(0)+f(
)+f(
)+…+f(
)+f(1)的值.
| 1 |
| 4x+2 |
(1)证明:函数f(x)关于点(
| 1 |
| 2 |
| 1 |
| 4 |
(2)求f(0)+f(
| 1 |
| 8 |
| 2 |
| 8 |
| 7 |
| 8 |
(1)设曲线上任意一点A((x1,y1)关于(
,
)的对称点A′(1-x1,
-y1),
由f(1-x1)=
=
=
=
-
=1-y1
所以图象过A′(1-x1,
-y1)
所以f(x)关于点(
,
)对称.
(2)由(1)的对称性,所以f(
) =
, f(
)+f (
)=f(
)+f(
)=f(
) +f(
) =f( 0)+f(1) =
f(0)+f(
)+f(
)+…+f(
)+f(1)=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
由f(1-x1)=
| 1 |
| 41-x1+2 |
| 4x1 |
| 4+2•4x1 |
| 4x1+2-2 |
| 2(4x1+2) |
| 1 |
| 2 |
| 1 |
| 4x1+2 |
所以图象过A′(1-x1,
| 1 |
| 2 |
所以f(x)关于点(
| 1 |
| 2 |
| 1 |
| 4 |
(2)由(1)的对称性,所以f(
| 4 |
| 8 |
| 1 |
| 4 |
| 3 |
| 8 |
| 5 |
| 8 |
| 2 |
| 8 |
| 6 |
| 8 |
| 1 |
| 8 |
| 7 |
| 8 |
| 1 |
| 2 |
f(0)+f(
| 1 |
| 8 |
| 2 |
| 8 |
| 7 |
| 8 |
| 9 |
| 4 |
练习册系列答案
相关题目