题目内容
(2012•宝鸡模拟)已知点M(xk,xk+1)在函数f(x)=
的图象上,且xk≠0,x1=1,数列{an}满足:ak=
,(k,n∈N+).
(1)求数列{an}通项公式;
(2)若数列{bn}满足bn=7-2an,求数列{|bn|}的前n项和Tn.
| 2x |
| x+2 |
| 1 |
| xk |
(1)求数列{an}通项公式;
(2)若数列{bn}满足bn=7-2an,求数列{|bn|}的前n项和Tn.
分析:(1)根据M(xk,xk+1)在函数f(x)=
的图象上,可得xk+1=
,取倒数,结合ak=
,可得数列{an}是以1为首项,
为公差的等差数列,由此可求数列{an}通项公式;
(2)若数列{bn}满足bn=7-2an=6-n,再进行分类讨论:当n≤6时,Tn=
=
;当n>6时,Tn=15-
=
,从而可求数列{|bn|}的前n项和Tn.
| 2x |
| x+2 |
| 2xk |
| xk+2 |
| 1 |
| xk |
| 1 |
| 2 |
(2)若数列{bn}满足bn=7-2an=6-n,再进行分类讨论:当n≤6时,Tn=
| n(5+6-n) |
| 2 |
| n(11-n) |
| 2 |
| (n-6)(-1+6-n) |
| 2 |
| n2-11n+60 |
| 2 |
解答:解:(1)∵M(xk,xk+1)在函数f(x)=
的图象上
∴xk+1=
∴
=
+
∵ak=
∴ak+1=ak+
∵x1=1,∴a1=1
∴数列{an}是以1为首项,
为公差的等差数列
∴an=
n+
(2)若数列{bn}满足bn=7-2an=6-n
∴当n≤6时,Tn=
=
;
当n>6时,Tn=15-
=
∴数列{|bn|}的前n项和Tn=
| 2x |
| x+2 |
∴xk+1=
| 2xk |
| xk+2 |
∴
| 1 |
| xk+1 |
| 1 |
| xk |
| 1 |
| 2 |
∵ak=
| 1 |
| xk |
∴ak+1=ak+
| 1 |
| 2 |
∵x1=1,∴a1=1
∴数列{an}是以1为首项,
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
| 1 |
| 2 |
(2)若数列{bn}满足bn=7-2an=6-n
∴当n≤6时,Tn=
| n(5+6-n) |
| 2 |
| n(11-n) |
| 2 |
当n>6时,Tn=15-
| (n-6)(-1+6-n) |
| 2 |
| n2-11n+60 |
| 2 |
∴数列{|bn|}的前n项和Tn=
|
点评:本题考查数列与函数的综合,考查等差数列的通项,考查数列的求和,解题的关键是确定数列为等差数列,从而正确运用公式.
练习册系列答案
相关题目