题目内容
已知公差不为零的等差数列{an}中,a1=1,且a1,a2,a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,求数列{bn}的前n项和Sn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 2 | anan+1 |
分析:(Ⅰ)根据a1,a2,a5成等比数列,可得
=a1•a5,从而可求数列的公差,由此可求{an}的通项公式;
(Ⅱ)裂项求和,利用bn=
=
=
-
,即可求数列{bn}的前n项和Sn.
| a | 2 2 |
(Ⅱ)裂项求和,利用bn=
| 2 |
| an•an+1 |
| 2 |
| (2n-1)(2n+1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:解:(Ⅰ)设{an}的公差为d,(d≠0),
∵a1,a2,a5成等比数列,∴
=a1•a5(2分)
又a1=1,∴(1+d)2=1•(1+4d),
∵d≠0,∴d=2(5分)
∴{an}的通项公式为an=2n-1(6分)
(Ⅱ)∵bn=
=
=
-
(9分)
∴sn=
+
+…+
=(1-
)+(
-
)+…+(
-
)
=1-
=
(12分)
∵a1,a2,a5成等比数列,∴
| a | 2 2 |
又a1=1,∴(1+d)2=1•(1+4d),
∵d≠0,∴d=2(5分)
∴{an}的通项公式为an=2n-1(6分)
(Ⅱ)∵bn=
| 2 |
| an•an+1 |
| 2 |
| (2n-1)(2n+1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴sn=
| 2 |
| 1•3 |
| 2 |
| 3•5 |
| 2 |
| (2n-1)(2n+1) |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=1-
| 1 |
| 2n+1 |
| 2n |
| 2n+1 |
点评:本题考查等差数列与等比数列的综合,考查等比数列的性质,考查裂项法求数列的和,正确运用公式是关键.
练习册系列答案
相关题目