题目内容
设1<x<a,那么logax2、(logax)2、loga(logax)之间的大小顺序是( )A.logax2<(logax)2<loga(logax) B.logax2<loga(logax)<(logax)2
C.loga(logax)<(logax)2<logax2 D.(logax)2<logax2<loga(logax)
解析:解法一:令x=2,a=4,则logax2=log44=1,
(logax)2=(log42)2=
,loga(logax)=log4(log42)=-
,∴loga(logax)<(logax)2<logax2.
解法二:∵1<x<a,∴0<logax<1.logax2=2logax>logax>0, 0<(logax)2<logax,loga(logax)<loga1=0,
∴loga(logax)<(logax)2<logax2.
答案:C
练习册系列答案
相关题目