题目内容

设1<x<a,那么logax2、(logax)2、loga(logax)之间的大小顺序是(    )

A.logax2<(logax)2<loga(logax)                            B.logax2<loga(logax)<(logax)2

C.loga(logax)<(logax)2<logax2                            D.(logax)2<logax2<loga(logax)

解析:解法一:令x=2,a=4,则logax2=log44=1,

(logax)2=(log42)2=,loga(logax)=log4(log42)=-,∴loga(logax)<(logax)2<logax2.

解法二:∵1<x<a,∴0<logax<1.logax2=2logax>logax>0,  0<(logax)2<logax,loga(logax)<loga1=0,

∴loga(logax)<(logax)2<logax2.

答案:C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网