题目内容

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于为正品,小于为次品.现随机抽取这两种元件各件进行检测,检测结果统计如下:

测试指标

元件A

元件B

(Ⅰ)试分别估计元件A,元件B为正品的概率;

(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,

(ⅰ)记为生产1件元件A和1件元件B所得的总利润,求随机变量的分布列和数学期望;

(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.

解:(Ⅰ)解:元件A为正品的概率约为.         …………1分

元件B为正品的概率约为.               ………………2分

(Ⅱ)解:(ⅰ)随机变量的所有取值为.           ………………3分

   ;     

;      .   ………………7分

所以,随机变量的分布列为:

      .             ………8分

(ⅱ)设生产的5件元件B中正品有件,则次品有件.

依题意,得 ,  解得

    所以 ,或.…10分 

设“生产5件元件B所获得的利润不少于140元”为事件

                    ………………12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网