题目内容
数列{an},{bn}分别满足an+1=| an |
| an+2 |
(1)求证数列{
| 1 |
| an |
(2)求数列{n(
| 1 |
| an |
(3)若数列{an}的前n项和为Kn,求证:当n≥3时,Kn>
| 2n |
| n+1 |
分析:(1)先根据an+1=
,两边取倒数等号也成立,进而可得
=2,进而推断数列{
+1}为等比数列,且首项为2,公比为2,进而求得数列{an}的通项公式;
(2)由(1)可得数列{n(
+1)}的通项公式,再利用错位相减法,求得Sn
(3)由(1)中的an可得Kn,又根据an=
>2(
-
),代入Kn,即可证明原式.
| an |
| an+2 |
(
| ||
|
| 1 |
| an |
(2)由(1)可得数列{n(
| 1 |
| an |
(3)由(1)中的an可得Kn,又根据an=
| 1 |
| 2n-1 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)证明:∵an+1=
∴
=
=
=2
∵数列{
+1}是以
+1=2为首项,2为公比的等比数列,
所以
+1=2n可得an=
(2)由(1)可知n(
+1)=n•2n,
所以Sn=1•21+2•22+3•23++(n-1)•2n-1+n•2n,2Sn=1•22+2•23+3•24++(n-1)•2n+n•2n+1,
两式相减化简可得,Sn=2+(n-1)•2n+1
(3)n≥3,2n=
+
++
<
+
+
=1+n+
=1+
,
可得n≥3,an=
>
=
=2(
-
),此时Kn>a1+a2+2(
-
)+2(
-
)++2(
-
)=1+
+2(
-
)=
| an |
| an+2 |
∴
| ||
|
| ||||
|
(
| ||
|
∵数列{
| 1 |
| an |
| 1 |
| a1 |
所以
| 1 |
| an |
| 1 |
| 2n-1 |
(2)由(1)可知n(
| 1 |
| an |
所以Sn=1•21+2•22+3•23++(n-1)•2n-1+n•2n,2Sn=1•22+2•23+3•24++(n-1)•2n+n•2n+1,
两式相减化简可得,Sn=2+(n-1)•2n+1
(3)n≥3,2n=
| C | 0 n |
| C | 1 n |
| C | n n |
| C | 0 n |
| C | 1 n |
| C | 2 n |
| n(n-1) |
| 2 |
| n(n+1) |
| 2 |
可得n≥3,an=
| 1 |
| 2n-1 |
| 1 | ||
1+
|
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 2n |
| n+1 |
点评:本题主要考查等比数列的通项公式和求和公式的应用,属基础题.
练习册系列答案
相关题目