题目内容
已知数列{an}为等差数列,且a1=2,a1+a2+a3=12.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=3an,求证:数列{bn}是等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=3an,求证:数列{bn}是等比数列.
(Ⅰ)∵数列{an}为等差数列,设公差为d,…(1分)
由a1=2,a1+a2+a3=12,得3a2=12,a2=4,
∴d=2,…(3分)
an=a1+(n-1)d=2+(n-1)•2=2n.…(6分)
(Ⅱ)∵bn=3an=32n=9n,…(8分)
∴
=
=9,…(11分)
∴数列{bn}是等比数列.…(12分)
由a1=2,a1+a2+a3=12,得3a2=12,a2=4,
∴d=2,…(3分)
an=a1+(n-1)d=2+(n-1)•2=2n.…(6分)
(Ⅱ)∵bn=3an=32n=9n,…(8分)
∴
| bn+1 |
| bn |
| 9n+1 |
| 9n |
∴数列{bn}是等比数列.…(12分)
练习册系列答案
相关题目
定义:在数列{an}中,an>0且an≠1,若
为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2009=( )
| a | an+1 n |
| A、6026 | B、6024 |
| C、2 | D、4 |