题目内容
(2013•宁波模拟)设数列{an}满足:a1=a2=1,a3=2,且对于任意正整数n都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,则a1+a2+a3+…+a2013=
4025
4025
.分析:由anan+1an+2an+3=an+an+1+an+2+an+3,可求a4,a5,a6,由以上可发现数列{an}是以4为周期的数列,进而可求数列的和
解答:解:a1=a2=1,a3=2,
又∵anan+1an+2≠1,且anan+1an+2an+3=an+an+1+an+2+an+3,
则an+3=
∴a4=
=4
a5=
=1
a6=
=1
a7=
=2
a8=
=4
由以上可发现数列{an}是以4为周期的数列
则a1+a2+a3+…+a2013=503(a1+a2+a3+a4)+a1
=503×8+1=4025
故答案为:4025
又∵anan+1an+2≠1,且anan+1an+2an+3=an+an+1+an+2+an+3,
则an+3=
| an+an+1+an+2 |
| an•an+1•an+2-1 |
∴a4=
| 1+1+2 |
| 2-1 |
a5=
| 1+2+4 |
| 1×2×4-1 |
a6=
| 2+4+1 |
| 1×2×4-1 |
a7=
| 4+1+1 |
| 4×1×1-1 |
a8=
| 1+1+2 |
| 1×1×2-1 |
由以上可发现数列{an}是以4为周期的数列
则a1+a2+a3+…+a2013=503(a1+a2+a3+a4)+a1
=503×8+1=4025
故答案为:4025
点评:本题主要考查了利用数列的递推公式求解数列的和,解题的关键是由递推公式求出数列的前几项,进而发现数列的周期性的规律
练习册系列答案
相关题目