题目内容
在△ABC中,角A、B、C所对的对边长分别为a、b、c;(Ⅰ)设向量
(Ⅱ)已知a2-c2=8b,且sinAcosC+3cosAsinC=0,求b.
【答案】分析:(Ⅰ)根据两个向量的坐标写出两个向量的和的坐标,根据向量平行的充要条件写出关于三角形内角的三角函数的关系式,在关系是两边同除以两个角的余弦值的积,把弦化切,得到结果.
(Ⅱ)本题所给的条件是既有边又有角,首先要统一为一种变量之间的关系,角化边,利用正弦定理和余弦定理转化,得到边之间的有一个关系,和题目中所给的另一个关系进行变化,得到结果.
解答:解:(Ⅰ)∵向量
,向量
,
∴
,
由
,
得cosC(sinB+cosB)+cosB(sinC+cosC)=0,
即sinBcosC+cosBsinC=-2cosBcosC
所以
;
(Ⅱ)∵sinAcosC+3cosAsinC=0,
∴sinAcosC=-3cosAsinC,
把角之间的关系变化为边之间的关系,
则由正弦定理及余弦定理有:
,
化简并整理得:a2-c2=2b2,
又由已知a2-c2=8b,
∴2b2=8b,
解得b=4或b=0(舍),
∴b=4.
点评:本题是一个三角函数同向量结合的问题,是以向量平行的充要条件为条件,得到三角函数的关系式,是一道综合题,在高考时可以出现,是一个近几年常考的问题.
(Ⅱ)本题所给的条件是既有边又有角,首先要统一为一种变量之间的关系,角化边,利用正弦定理和余弦定理转化,得到边之间的有一个关系,和题目中所给的另一个关系进行变化,得到结果.
解答:解:(Ⅰ)∵向量
∴
由
得cosC(sinB+cosB)+cosB(sinC+cosC)=0,
即sinBcosC+cosBsinC=-2cosBcosC
所以
(Ⅱ)∵sinAcosC+3cosAsinC=0,
∴sinAcosC=-3cosAsinC,
把角之间的关系变化为边之间的关系,
则由正弦定理及余弦定理有:
化简并整理得:a2-c2=2b2,
又由已知a2-c2=8b,
∴2b2=8b,
解得b=4或b=0(舍),
∴b=4.
点评:本题是一个三角函数同向量结合的问题,是以向量平行的充要条件为条件,得到三角函数的关系式,是一道综合题,在高考时可以出现,是一个近几年常考的问题.
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |