题目内容
多项式(1-2x)6(1+x)4展开式中,x最高次项为分析:利用二项展开式的通项公式求出多项式的通项,令x的指数最大求出x的最高次项,令x的指数为3求出x3系数.
解答:解:(1-2x)6的展开式的通项为Tr+1=C6r(-2x)r
(1+x)4的展开式的通项为Tk+1=C4kxk
∴(1-2x)6(1+x)4的展开式的通项为(-2)rC6rC4kxk+r其中r=0,1,2,3,4,5,6;k=0,1,2,3,4
∴当r=6,k=4时(1-2x)6(1+x)4的展开式有x的最高次项为(-2)6x10=64x10
令r+k=3得
,
,
,
∴(1-2x)6(1+x)4的展开式的x3系数为C60C43-2C61C42+4C62C41-8C63C40=12
故答案为64x10;12
(1+x)4的展开式的通项为Tk+1=C4kxk
∴(1-2x)6(1+x)4的展开式的通项为(-2)rC6rC4kxk+r其中r=0,1,2,3,4,5,6;k=0,1,2,3,4
∴当r=6,k=4时(1-2x)6(1+x)4的展开式有x的最高次项为(-2)6x10=64x10
令r+k=3得
|
|
|
|
∴(1-2x)6(1+x)4的展开式的x3系数为C60C43-2C61C42+4C62C41-8C63C40=12
故答案为64x10;12
点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.
练习册系列答案
相关题目