题目内容
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).
(1)设bn=
,求证:数列{bn}是等差数列:
(2)设数列{cn}满足cn=
(n∈N*),Tn=c1c2+c2c3+c3c4+…cncn+1,若对一切n∈N*不等式2mTn>Cn恒成立,实数m的取值范围.
(1)设bn=
| an |
| 2n |
(2)设数列{cn}满足cn=
| 1 | ||
log2(
|
(1)当n=1时:S1=a1=2a1-21|1,解得a1=4
当n≥2时
由Sn=2an-2n+1 …①
且Sn-1=2an-1-2n …②
①-②得:an=2an-2an-1-2n
有:an=2an-1+2n
得
-
=1,
∴bn-bn-1=1,
b1=
=2,
故数列{bn}是以2为首项,以1为公差的等差数列.
(2)由(1)得:bn=1+2(n-1)=2n-1,
即an=(n+1)•2n.
∴Cn=
,
∴Cn•Cn+1=
•
=
-
,
∴Tn=
-
,
由2mTn>cn,得:2m(
-
)>
,
得m>
,
又令f(n)=
,
∴f(n+1)-f(n)=
-
=
(
-
)<0,
故f(n)在n∈N*时单调递减,
∴f(n)<f(1)=
,
得m>
.
当n≥2时
由Sn=2an-2n+1 …①
且Sn-1=2an-1-2n …②
①-②得:an=2an-2an-1-2n
有:an=2an-1+2n
得
| an |
| 2n |
| an-1 |
| 2n-1 |
∴bn-bn-1=1,
b1=
| a1 |
| 2 |
故数列{bn}是以2为首项,以1为公差的等差数列.
(2)由(1)得:bn=1+2(n-1)=2n-1,
即an=(n+1)•2n.
∴Cn=
| 1 |
| n+1 |
∴Cn•Cn+1=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| n+2 |
由2mTn>cn,得:2m(
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| n+1 |
得m>
| n+2 |
| n(n+1) |
又令f(n)=
| n+2 |
| n(n+1) |
∴f(n+1)-f(n)=
| n+3 |
| (n+1)(n+2) |
| n+2 |
| n(n+1) |
=
| 1 |
| n+1 |
| n+3 |
| n+2 |
| n+2 |
| n |
故f(n)在n∈N*时单调递减,
∴f(n)<f(1)=
| 3 |
| 2 |
得m>
| 3 |
| 2 |
练习册系列答案
相关题目