题目内容

已知函数f(x)=2msin2x-2
3
msinx•cosx+n
的定义域为[0,
π
2
]
,值域为[-5,4].试求函数g(x)=msinx+2ncosx(x∈R)的最小正周期和最值.
f(x)=-
3
msin2x-mcos2x+m+n=-2msin(2x+
π
6
)
+m+nx∈[0,
π
2
]

?2x+
π
6
∈[
π
6
6
]
?sin(2x+
π
6
)∈[-
1
2
,1]

当m>0时,f(x)max=-2m(-
1
2
)+m+n=4
,f(x)min=-m+n=-5
解得m=3,n=-2,
从而,g(x)=3sinx-4cosx=5sin(x+φ)(x∈R),
T=2π,最大值为5,最小值为-5;
当m<0时,解得m=-3,n=1,
从而,g(x)=-3sinx+2cosx=
13
sin(x+φ)
,T=2π,最大值为
13

最小值为-
13
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网