题目内容
11.直线y=kx+1与圆x2+y2=2的位置关系是( )| A. | 相离 | B. | 相切 | C. | 相交 | D. | 均有可能 |
分析 对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在,(0,1)在圆x2+y2=2内,故可得结论.
解答 解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在
∵(0,1)在圆x2+y2=2内
∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心.
故选:C.
点评 本题考查直线与圆的位置关系,解题的关键是确定直线y=kx+1恒过点(0,1),且斜率存在.
练习册系列答案
相关题目
5.二项式${({x+\frac{1}{x}})^4}$的展开式中的常数项是( )
| A. | 1 | B. | 2 | C. | 6 | D. | 12 |
2.为了得到函数y=tan(2x-$\frac{π}{6}$)的图象,可以将函数y=tan2x的图象( )
| A. | 向右平移$\frac{π}{6}$个单位长度 | B. | 向右平移$\frac{π}{12}$个单位长度 | ||
| C. | 向左平移$\frac{π}{6}$个单位长度 | D. | 向左平移$\frac{π}{12}$个单位长度 |
6.有如图两个程序( )

| A. | 两个程序输出结果相同 | |
| B. | 程序(1)输出的结果比程序(2)输出的结果大 | |
| C. | 程序(2)输出的结果比程序(1)输出的结果大 | |
| D. | 两个程序输出结果的大小不能确定,谁大谁小都有可能 |
16.若平面α的一个法向量$\overrightarrow n$=(2,1,1),直线l的一个方向向量为$\overrightarrow a$=(1,2,3),则l与α所成角的正弦值为( )
| A. | $\frac{\sqrt{17}}{6}$ | B. | $\frac{\sqrt{21}}{6}$ | C. | -$\frac{\sqrt{21}}{6}$ | D. | $\frac{\sqrt{21}}{3}$ |
3.在研究色盲与性别的关系调查中,调查了男性400人,其中有30人患色盲,调查的600名女性中有20人患色盲.
(1)根据以上数据建立一个2×2列联表;
(2)有多大把握认为“性别与患色盲有关系”?
参考公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
附临界值参考表:
(1)根据以上数据建立一个2×2列联表;
(2)有多大把握认为“性别与患色盲有关系”?
参考公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
附临界值参考表:
| P(K2≥x0) | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
| x0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
20.设θ是第三象限角,且|cos$\frac{θ}{2}$|=-cos$\frac{θ}{2}$,则$\frac{θ}{2}$是( )
| A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |