题目内容
已知双曲线mx2-y2=1(m>0)的右顶点为A,若该双曲线右支上存在两点B、C使得△ABC为等腰直角三角形,则该双曲线的离心率e的取值范围是( )
| A、(1,3) | ||
B、(1,
| ||
| C、(1,2) | ||
D、(1,
|
分析:由已知中双曲线mx2-y2=1(m>0)的右顶点为A,若该双曲线右支上存在两点B、C使得△ABC为等腰直角三角形,我们易判断出AB边的倾斜角进而求出其斜率,利用双曲线的性质,我们易确定渐近线斜率的范围,结合已知中双曲线的方程,我们要以构造出关于m的不等式,解不等式即可得到答案.
解答:
解:如图所示:
∵△ABC为等腰直角三角形,
∴∠BAX=45°设其中一条渐近线与X轴夹角为θ,则θ<45°
即tanθ<1
即
<1
即0<m<1
又∵e2=1+
=1+m
∴1<e2<2
即1<e<
故选D
∵△ABC为等腰直角三角形,
∴∠BAX=45°设其中一条渐近线与X轴夹角为θ,则θ<45°
即tanθ<1
即
| m |
即0<m<1
又∵e2=1+
| b2 |
| a2 |
∴1<e2<2
即1<e<
| 2 |
故选D
点评:本题考查的知识点是双曲线的性质,其中根据双曲线的性质,判断出渐近线的斜率的取值范围是解答本题的关键.
练习册系列答案
相关题目