题目内容

精英家教网设函数f(x)=
a
• 
b
,其中向量
a
=(2cosx,1),
b
=(cosx,
3
sin2x),x∈R.
(1)若函数f(x)=1-
3
,且x∈[-
π
3
π
3
],求x;
(2)求函数y=f(x)的单调增区间;
并在给出的坐标系中画出y=f(x)在区间[0,π]上的图象.
分析:(1)化简函数的解析式为 f(x)=2sin(2x+
π
6
 )+1,由f(x)=1-
3
,解得sin(2x+
π
6
 )=-
3
2
,结合x的
范围,求出x值.
(2)由 2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈z,求得x的范围即得单调增区间,有五点法做出其图象.
解答:解:(1)依题设得函数f(x)=2cos2x+
3
sin2x=1+2cos2x+
3
sin2x=2sin(2x+
π
6
 )+1,
由 2sin(2x+
π
6
 )=1=1-
3
,∴sin(2x+
π
6
 )=-
3
2
.∵-
π
3
≤x≤
π
3

∴-
π
2
≤2x+
π
6
6
,∴2x+
π
6
=-
π
3
,x=-
π
4

(2)由 2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈z,得 kπ-
π
3
≤x≤kπ+
π
6

得函数单调增区间为[kπ-
π
3
,kπ+
π
6
].

x 0
π
6
π
3
 
 
π
2
3
6
π
y 2 3 2 0 -1 0 2
精英家教网
点评:本题考查两个向量的数量积公式的应用,正弦函数的单调性,以及用五点法作y=Asin(ωx+∅)的简图,化简函数
f(x)的解析式是解题的突破口.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网