题目内容

已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是
(3,+∞)
(3,+∞)
分析:画出函数f(x)的图象,则数形结合可知0<a<1,b>1,且ab=1,再将所求a+2b化为关于a的一元函数,利用函数单调性求函数的值域即可
解答:解:画出y=|lgx|的图象如图:
∵0<a<b,且f(a)=f(b),
∴|lga|=|lgb|且0<a<1,b>1
∴-lga=lgb
即ab=1
∴y=a+2b=a+
2
a
,a∈(0,1)
∵y=a+
2
a
在(0,1)上为减函数,
∴y>1+
2
1
=3
∴a+2b的取值范围是(3,+∞)
故答案为 (3,+∞)
点评:本题主要考查了对数函数的图象和性质,利用“对勾”函数求函数值域的方法,数形结合的思想方法,转化化归的思想方法,属基础题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网