题目内容
已知x,y,z∈R+,求证:
(1)(x+y+z)3≥27xyz;
(2)(
+
+
)(
+
+
)≥9;
(3)(x+y+z)(x2+y2+z2)≥9xyz.
(1)(x+y+z)3≥27xyz;
(2)(
| x |
| y |
| y |
| z |
| z |
| x |
| y |
| x |
| z |
| y |
| x |
| z |
(3)(x+y+z)(x2+y2+z2)≥9xyz.
分析:利用基本不等式,结合不等式的性质,即可证明结论.
解答:证明:(1)∵x,y,z∈R+,∴x+y+z≥3
,当且仅当x=y=z时,取等号,∴(x+y+z)3≥27xyz;
(2)∵x,y,z∈R+,∴
+
+
≥3
=3,
+
+
≥3
=3,当且仅当x=y=z时,取等号,
∴两式相乘,可得(
+
+
)(
+
+
)≥9;
(3))∵x,y,z∈R+,∴x+y+z≥3
,x2+y2+z2≥3
,当且仅当x=y=z时,取等号,
∴两式相乘可得(x+y+z)(x2+y2+z2)≥9xyz.
| 3 | xyz |
(2)∵x,y,z∈R+,∴
| x |
| y |
| y |
| z |
| z |
| x |
| 3 |
| ||||||
| y |
| x |
| z |
| y |
| x |
| z |
| 3 |
| ||||||
∴两式相乘,可得(
| x |
| y |
| y |
| z |
| z |
| x |
| y |
| x |
| z |
| y |
| x |
| z |
(3))∵x,y,z∈R+,∴x+y+z≥3
| 3 | xyz |
| 3 | x2y2z2 |
∴两式相乘可得(x+y+z)(x2+y2+z2)≥9xyz.
点评:本题考查不等式的证明,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目