题目内容

已知f(x)=1+sin
π
2
x
,则f(1)+f(2)+f(3)+…+f(2009)=______.
f(x)=1+sin
π
2
x

则f(1)+f(2)+f(3)+…+f(2009)
=1+sin
π
2
+1+sinπ+1+sin
2
+1+sin2π+1+sin
2
+…+1+sin
2009π
2

=2009+(sin
π
2
+sinπ+sin
2
+sin2π)+(sin
2
+sin3π+sin
2
+sin4π)+…+(sin
2005π
2
+sin1003π+sin
2007π
2
+sin1004π)
+sin
2009π
2
=2009+(sin
π
2
+sinπ+sin
2
+sin2π)+(sin
π
2
+sinπ+sin
2
+sin2π)+…+(sin
π
2
+sinπ+sin
2
+sin2π)+sin
2009π
2

=2009+0+0+…+0+sin(2×502π+
π
2

=2009+1
=2010
故答案为:2010
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网