题目内容
已知f(x)=1+sin
x,则f(1)+f(2)+f(3)+…+f(2009)=______.
| π |
| 2 |
由f(x)=1+sin
x,
则f(1)+f(2)+f(3)+…+f(2009)
=1+sin
+1+sinπ+1+sin
+1+sin2π+1+sin
+…+1+sin
=2009+(sin
+sinπ+sin
+sin2π)+(sin
+sin3π+sin
+sin4π)+…+(sin
+sin1003π+sin
+sin1004π)
+sin
=2009+(sin
+sinπ+sin
+sin2π)+(sin
+sinπ+sin
+sin2π)+…+(sin
+sinπ+sin
+sin2π)+sin
=2009+0+0+…+0+sin(2×502π+
)
=2009+1
=2010
故答案为:2010
| π |
| 2 |
则f(1)+f(2)+f(3)+…+f(2009)
=1+sin
| π |
| 2 |
| 3π |
| 2 |
| 5π |
| 2 |
| 2009π |
| 2 |
=2009+(sin
| π |
| 2 |
| 3π |
| 2 |
| 5π |
| 2 |
| 7π |
| 2 |
| 2005π |
| 2 |
| 2007π |
| 2 |
+sin
| 2009π |
| 2 |
| π |
| 2 |
| 3π |
| 2 |
| π |
| 2 |
| 3π |
| 2 |
| π |
| 2 |
| 3π |
| 2 |
| 2009π |
| 2 |
=2009+0+0+…+0+sin(2×502π+
| π |
| 2 |
=2009+1
=2010
故答案为:2010
练习册系列答案
相关题目