题目内容
已知函数y=f(x),x∈N*,y∈N*,满足:①对任意a,b∈N*,a≠b,都有af(a)+bf(b)>af(b)+bf(a);②对任意n∈N*都有f[f(n)]=3n.
(I)试证明:f(x)为N*上的单调增函数;
(II)求f(1)+f(6)+f(28);
(III)令an=f(3n),n∈N*,试证明:.
≤
+
+…+
<
.
(I)试证明:f(x)为N*上的单调增函数;
(II)求f(1)+f(6)+f(28);
(III)令an=f(3n),n∈N*,试证明:.
| n |
| 4n+2 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 4 |
(I)由①知,对任意a,b∈N*,a<b,都有(a-b)(f(a)-f(b))>0,
由于a-b<0,从而f(a)<f(b),
所以函数f(x)为N*上的单调增函数.
(II)令f(1)=a,则a≥1,显然a≠1,否则f(f(1))=f(1)=1,与f(f(1))=3矛盾.
从而a>1,而由f(f(1))=3,
即得f(a)=3.
又由(I)知f(a)>f(1)=a,即a<3.
于是得1<a<3,又a∈N*,
从而a=2,即f(1)=2.
进而由f(a)=3知,f(2)=3.
于是f(3)=f(f(2))=3×2=6,
f(6)=f(f(3))=3×3=9,
f(9)=f(f(6))=3×6=18,
f(18)=f(f(9))=3×9=27,
f(27)=f(f(18))=3×18=54,
f(54)=f(f(27))=3×27=81,
由于54-27=81-54=27,
而且由(I)知,函数f(x)为单调增函数,
因此f(28)=54+1=55.
从而f(1)+f(6)+f(28)=2+9+55=66.
(III)f(an)=f(f(3n))=3×3n=3n+1,an+1=f(3n+1)=f(f(an))=3an,a1=f(3)=6.
即数列{an}是以6为首项,以3为公比的等比数列.
∴an=6×3n-1=2×3n(n=1,2,3).
于是
+
++
=
(
+
++
)=
×
=
(1-
),
显然
(1-
)<
,
另一方面3n=(1+2)n=1+Cn1×2+Cn2×22++Cnn×2n≥1+2n,
从而
(1-
)≥
(1-
)=
.
综上所述,
≤
+
++
<
.
由于a-b<0,从而f(a)<f(b),
所以函数f(x)为N*上的单调增函数.
(II)令f(1)=a,则a≥1,显然a≠1,否则f(f(1))=f(1)=1,与f(f(1))=3矛盾.
从而a>1,而由f(f(1))=3,
即得f(a)=3.
又由(I)知f(a)>f(1)=a,即a<3.
于是得1<a<3,又a∈N*,
从而a=2,即f(1)=2.
进而由f(a)=3知,f(2)=3.
于是f(3)=f(f(2))=3×2=6,
f(6)=f(f(3))=3×3=9,
f(9)=f(f(6))=3×6=18,
f(18)=f(f(9))=3×9=27,
f(27)=f(f(18))=3×18=54,
f(54)=f(f(27))=3×27=81,
由于54-27=81-54=27,
而且由(I)知,函数f(x)为单调增函数,
因此f(28)=54+1=55.
从而f(1)+f(6)+f(28)=2+9+55=66.
(III)f(an)=f(f(3n))=3×3n=3n+1,an+1=f(3n+1)=f(f(an))=3an,a1=f(3)=6.
即数列{an}是以6为首项,以3为公比的等比数列.
∴an=6×3n-1=2×3n(n=1,2,3).
于是
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| 1 |
| 2 |
| ||||
1-
|
| 1 |
| 4 |
| 1 |
| 3n |
显然
| 1 |
| 4 |
| 1 |
| 3n |
| 1 |
| 4 |
另一方面3n=(1+2)n=1+Cn1×2+Cn2×22++Cnn×2n≥1+2n,
从而
| 1 |
| 4 |
| 1 |
| 3n |
| 1 |
| 4 |
| 1 |
| 2n+1 |
| n |
| 4n+2 |
综上所述,
| n |
| 4n+2 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 4 |
练习册系列答案
相关题目