题目内容

已知{an}是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)若数列{bn}满足b1=1,bn+1=bn+,求证:bn?bn+2<b2n+1

解法一:

(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,

所以数列{an}是以1为首项,公差为1的等差数列.

故an=1+(n-1)×1=n.

(Ⅱ)由(Ⅰ)知:an=n从而bn+1-bn=2n

bn=(bn-bn-1)+(bn-1-bn-2)+­­­­­­­­­­­???+(b2-b1)+b1

=2n-1+2n-2+???+2+1

=2n-1.

因为bn?bn+2-b=(2n-1)(2n+2-1)-(2n+1-1)2

=(22n+2-2n+2-2n+1)-(22n+2-2?2n+1+1)

=-5?2n+4?2n

=-2n<0,

所以bn?bn+2<b,

解法二:

(Ⅰ)同解法一.

(Ⅱ)因为b1=1,

bn?bn+2- b=(bn+1-2n)(bn+1+2n+1)- b

            =2n+1?bn+1-2n?bn+1-2n?2n+1

=2n(bn+1-2n+1

=2n(bn+2n-2n+1

=2n(bn-2n

=…

=2n(b1-2)

=-2n<0,

所以bn?bn+2<b2n+1

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网