题目内容
(2012•东城区二模)下列命题中,真命题是( )
分析:特称命题若判断为真,只需验证即可;全称命题若判断为真,则需进行严格证明,若判断为假,反例验证即可.
解答:解:A、由于x∈R,则x2≥0,进而得到-x2≤0,
则-x2-1≤-1<0,故A为真命题;
B、由于x2+x+1=(x+
)2+
恒为正,则方程x2+x=-1无实数解,故B为假命题;
C、当x=
时,x2-x+
=(x-
)2=0,故C为假命题;
D、由于x2+2x+2=(x+1)2+1恒为正,则x2+2x+2<0无实数解,故D为假命题.
故答案为A.
则-x2-1≤-1<0,故A为真命题;
B、由于x2+x+1=(x+
| 1 |
| 2 |
| 3 |
| 4 |
C、当x=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
D、由于x2+2x+2=(x+1)2+1恒为正,则x2+2x+2<0无实数解,故D为假命题.
故答案为A.
点评:本题考查的知识点是,判断命题真假,属于基础题.
练习册系列答案
相关题目