题目内容
(2012•绵阳二模)已知数列{an},{bn}满足a1=
,an+bn=1,bn+1=
,则b2011=( )
| 1 |
| 2 |
| bn | ||
1-
|
分析:由an+bn=1,a1=
可求b1=
,由bn+1=
=
=
,把n=1,2,3分别代入可求b2,b3,b4,根据规律猜想通项,然后用数学归纳法进行证明即可
| 1 |
| 2 |
| 1 |
| 2 |
| bn | ||
1-
|
| bn |
| 1-(1-bn)2 |
| 1 |
| 2-bn |
解答:解:∵an+bn=1,a1=
∴b1=
∴bn+1=
=
=
∴b2=
=
;b3=
=
;b4=
=
猜想:bn=
下用数学归纳法进行证明:
①当n=1时,b1=
=
适合
②假设当n=k时满足条件,即bk=
当n=k+1时,bk+1=
=
=
综上可得,对于任意正整数n都成立
∴b2011=
| 1 |
| 2 |
∴b1=
| 1 |
| 2 |
∴bn+1=
| bn | ||
1-
|
| bn |
| 1-(1-bn)2 |
| 1 |
| 2-bn |
∴b2=
| 1 | ||
2-
|
| 2 |
| 3 |
| 1 | ||
2-
|
| 3 |
| 4 |
| 1 | ||
2-
|
| 4 |
| 5 |
猜想:bn=
| n |
| n+1 |
下用数学归纳法进行证明:
①当n=1时,b1=
| 1 |
| 1+1 |
| 1 |
| 2 |
②假设当n=k时满足条件,即bk=
| k |
| k+1 |
当n=k+1时,bk+1=
| 1 |
| 2-bk |
| 1 | ||
2-
|
| k+1 |
| k+2 |
综上可得,对于任意正整数n都成立
∴b2011=
| 2011 |
| 2012 |
点评:本题主要考察了利用数列的递推公式求解数列的项,解题的关键是根据前几项的规律归纳出数列的通项及数学归纳法的应用
练习册系列答案
相关题目