题目内容
对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是______.
根据题意,分2种情况讨论;
①x=0时,原式为1≥0,恒成立,则a∈R;
②x≠0时,原式可化为a|x|≥-(x2+1),即a≥-(|x|+
);
又由|x|+
≥2,则-(|x|+
)≤-2;
要使不等式x2+a|x|+1≥0恒成立,需有a≥-2即可;
综上可得,a的取值范围是[-2,+∞);
故答案为:[-2,+∞).
①x=0时,原式为1≥0,恒成立,则a∈R;
②x≠0时,原式可化为a|x|≥-(x2+1),即a≥-(|x|+
| 1 |
| |x| |
又由|x|+
| 1 |
| |x| |
| 1 |
| |x| |
要使不等式x2+a|x|+1≥0恒成立,需有a≥-2即可;
综上可得,a的取值范围是[-2,+∞);
故答案为:[-2,+∞).
练习册系列答案
相关题目