题目内容

设函数f(x)=2cos2x+
3
sin2x+a(a
为实常数)在区间[0,
π
2
]
上的最小值为-4,那么a的值为______.
求导得:f′(x)=-4sinxcosx+2
3
cos2x
=-2sin2x+2
3
cos2x
=4sin(
π
3
-2x),
令f′(x)=0,得到x=
π
6

∵f(0)=2+a,f(
π
2
)=a,f(
π
6
)=3+a,
∴函数的最小值为a,又函数区间[0,
π
2
]
上的最小值为-4,
则a=-4.
故答案为:-4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网