题目内容
已知函数g(x)=px-
-2lnx
(1)g(x)在其定义域内的单调函数,求p的取值范围;
(2)求证:lnx≤x-1(x>0)
(3)求证:
+
+…+
<
[(n-1)-(
+
+…
)](n∈N*,n≥2)
| p |
| x |
(1)g(x)在其定义域内的单调函数,求p的取值范围;
(2)求证:lnx≤x-1(x>0)
(3)求证:
| ln2 |
| 22 |
| ln3 |
| 32 |
| lnn |
| n2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
(1)求导函数,可得g′(x)=
(x>0)
∵g(x)在其定义域内的单调函数,
∴
或
或p=0
∴p≤-1或p≥1或p=0--------------------------------(4分)
(2)证明:设k(x)=lnx-x+1,则k′(x)=
-1=
(x>0)
∴函数在(0,1)上单调递增,在(1,+∞)上单调递减,
∴当x=1时,k(x)取极大值,
∴k(x)≤k(1)=0,即f(x)≤x-1(x>0)-------------------------------(8分)
(3)证明:由(2)知,lnx≤x-1,又x>0,有
≤
=1-
,
令x=n2得
=
<1-
,即
<
(1-
),
∴
+
+…+
<
[(1-
)+(1-
)+…+(1-
)]
=
[(n-1)-(
+
+…
)]--------(12分)
| px2-2x+p |
| x2 |
∵g(x)在其定义域内的单调函数,
∴
|
|
∴p≤-1或p≥1或p=0--------------------------------(4分)
(2)证明:设k(x)=lnx-x+1,则k′(x)=
| 1 |
| x |
| 1-x |
| x |
∴函数在(0,1)上单调递增,在(1,+∞)上单调递减,
∴当x=1时,k(x)取极大值,
∴k(x)≤k(1)=0,即f(x)≤x-1(x>0)-------------------------------(8分)
(3)证明:由(2)知,lnx≤x-1,又x>0,有
| lnx |
| x |
| x-1 |
| x |
| 1 |
| x |
令x=n2得
| ln(n2) |
| n2 |
| 2lnn |
| n2 |
| 1 |
| n2 |
| lnn |
| n2 |
| 1 |
| 2 |
| 1 |
| n2 |
∴
| ln2 |
| 22 |
| ln3 |
| 32 |
| lnn |
| n2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
=
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
练习册系列答案
相关题目