题目内容
已知数列{an}满足a1=1,an+1=2an+1(n∈N*)
(1)求数列{an}的通项公式;
(2)若数列{bn}满足4b1-1•42b2-1•43b3-1…4nbn-1=(an+1)n,求数列{bn}的通项公式;
(3)若cn=(bn-1)(bn+1-1),求数列{cn}的前n项和Sn.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足4b1-1•42b2-1•43b3-1…4nbn-1=(an+1)n,求数列{bn}的通项公式;
(3)若cn=(bn-1)(bn+1-1),求数列{cn}的前n项和Sn.
分析:(1)由已知可得an+1+1=2(an+1),从而可得数列{1+an}是等比数列,结合等比数列的通项公式可求
(2)由已知可得2(b1+2b2+…+nbn)-2n=n2+2n,2[b1+2b2+…+(n-1)bn-1]=(n-1)2+2(n-1),两式相减可求
(3)由cn=(bn-1)(bn+1-1)=
•
=
=
(
-
),利用裂项求和即可
(2)由已知可得2(b1+2b2+…+nbn)-2n=n2+2n,2[b1+2b2+…+(n-1)bn-1]=(n-1)2+2(n-1),两式相减可求
(3)由cn=(bn-1)(bn+1-1)=
| 1 |
| 2n |
| 1 |
| 2(n+1) |
| 1 |
| 4n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)∵a1=1,an+1=2an+1
∴a1=1,an+1+1=2(an+1)
∴数列{1+an}是以2为公比以2为首项的等比数列
∴an+1=2n
∴an=2n-1
(2)∵4b1-1•42b2-1•43b3-1…4nbn-1=(an+1)n,
∴4b1+2b2+3b3+…+nbn-n=2n2
∴2(b1+2b2+…+nbn)-2n=n2
∴2(b1+2b2+…+nbn)-2n=n2+2n①
2[b1+2b2+…+(n-1)bn-1]=(n-1)2+2(n-1)②
①-②可得,2nbn=2n+1
即bn=1+
(n≥2),n=1也满足
∴bn=1+
(3)∵cn=(bn-1)(bn+1-1)=
•
=
=
(
-
)
∴Sn=
(1-
+
-
+…+
-
)
=
(1-
)=
∴a1=1,an+1+1=2(an+1)
∴数列{1+an}是以2为公比以2为首项的等比数列
∴an+1=2n
∴an=2n-1
(2)∵4b1-1•42b2-1•43b3-1…4nbn-1=(an+1)n,
∴4b1+2b2+3b3+…+nbn-n=2n2
∴2(b1+2b2+…+nbn)-2n=n2
∴2(b1+2b2+…+nbn)-2n=n2+2n①
2[b1+2b2+…+(n-1)bn-1]=(n-1)2+2(n-1)②
①-②可得,2nbn=2n+1
即bn=1+
| 1 |
| 2n |
∴bn=1+
| 1 |
| 2n |
(3)∵cn=(bn-1)(bn+1-1)=
| 1 |
| 2n |
| 1 |
| 2(n+1) |
| 1 |
| 4n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 4 |
| 1 |
| n+1 |
| n |
| 4n+4 |
点评:本题主要考查了利用数列的递推公式构造等比数列求解通项公式,利用数列的递推公式转化数列的和与项之间的关系,裂项求解数列的和的应用.
练习册系列答案
相关题目