题目内容
已知各项均为正数的数列{an}的前n项和为Sn,Sn=4-an,n∈N*,数列{bn}满足bn=log2an.
(1)求an,bn;
(2)设数列
的前n项和为Tn,求Tn.
(1)求an,bn;
(2)设数列
| 1 | (bn+2)(bn+4) |
分析:(1)当n≥2时,an=Sn-Sn-1=(4-an)-(4-an-1),化为
=
,利用等比数列的通项公式即可得出an;利用对数的运算法则即可得出bn;
(2)利用“裂项求和”即可得出.
| an |
| an-1 |
| 1 |
| 2 |
(2)利用“裂项求和”即可得出.
解答:解:(1)当n=1时,由a1=4-a1,解得a1=2;当n≥2时,an=Sn-Sn-1=(4-an)-(4-an-1),化为
=
,
∴数列{an}是以2为首项,
为公比的等比数列,∴an=2×(
)n-1=22-n.
∴bn=log2an=log222-n=2-n;
(2)由(1)可知:
=
=
(
-
),(n≠4,6).
∴Tn=
[(-
-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(-
-
-
-
)
=-
-
-
.
| an |
| an-1 |
| 1 |
| 2 |
∴数列{an}是以2为首项,
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=log2an=log222-n=2-n;
(2)由(1)可知:
| 1 |
| (bn+2)(bn+4) |
| 1 |
| (4-n)(6-n) |
| 1 |
| 2 |
| 1 |
| n-6 |
| 1 |
| n-4 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| -3 |
| 1 |
| -4 |
| 1 |
| -2 |
| 1 |
| -3 |
| 1 |
| -1 |
| 1 |
| n-7 |
| 1 |
| n-5 |
| 1 |
| n-6 |
| 1 |
| n-4 |
=
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| n-5 |
| 1 |
| n-4 |
=-
| 9 |
| 40 |
| 1 |
| 2(n-5) |
| 1 |
| 2(n-4) |
点评:本题考查了等比数列的通项公式、对数的运算法则、“裂项求和”等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关题目