题目内容
(2011•武汉模拟)已知数列{an}中,a1=2,an+1=an+cn(其中c为非零常数,n∈N*),a1、a2、a3组成公比不为1的等比数列.
(Ⅰ) 求c的值;
(Ⅱ)记数列{
}的前n项和为Sn,求证Sn<
.
(Ⅰ) 求c的值;
(Ⅱ)记数列{
| 1 |
| an |
| 3 |
| 2 |
分析:(Ⅰ)由题意,知a1=2,a2=2+c,a3=2+3c,由a1,a2,a3成等比数列,能求出c的值.
(Ⅱ)当n≥2时,a2-a1=c,a3-a2=2c,…,an-an-1=(n-1)c,所以an-a1=[1+2+3+…+(n-1)]c=
c,所以,an=n2-n+2(n∈N+),
=
.由此能够证明Sn<
.
(Ⅱ)当n≥2时,a2-a1=c,a3-a2=2c,…,an-an-1=(n-1)c,所以an-a1=[1+2+3+…+(n-1)]c=
| n(n-1) |
| 2 |
| 1 |
| an |
| 1 |
| n2-n+2 |
| 3 |
| 2 |
解答:解:(Ⅰ)由题意,知a1=2,a2=2+c,a3=2+3c,
∵a1,a2,a3成等比数列,
∴(2+c)2=2(2+3c),
解得c=0,或c=2.
当c=0时,a1=a2=a3,不合题意,舍去.
故c=2.
(Ⅱ)当n≥2时,
∵a2-a1=c,a3-a2=2c,…,an-an-1=(n-1)c,
∴an-a1=[1+2+3+…+(n-1)]c
=
c,
∵a1=2,c=2,
∴an=2+n(n-1)=n2-n+2(n≥2,n∈N+),
当n=1时,上式也成立,
所以,an=n2-n+2(n∈N+),
∴
=
.
当n-1时,S1=
=
<
,
当n≥2时,由
=
=
<
,
得Sn=
+
+
+…+
=
+
+
+…+
=
-
<
,
∴Sn<
.
∵a1,a2,a3成等比数列,
∴(2+c)2=2(2+3c),
解得c=0,或c=2.
当c=0时,a1=a2=a3,不合题意,舍去.
故c=2.
(Ⅱ)当n≥2时,
∵a2-a1=c,a3-a2=2c,…,an-an-1=(n-1)c,
∴an-a1=[1+2+3+…+(n-1)]c
=
| n(n-1) |
| 2 |
∵a1=2,c=2,
∴an=2+n(n-1)=n2-n+2(n≥2,n∈N+),
当n=1时,上式也成立,
所以,an=n2-n+2(n∈N+),
∴
| 1 |
| an |
| 1 |
| n2-n+2 |
当n-1时,S1=
| 1 |
| a1 |
| 1 |
| 2 |
| 3 |
| 2 |
当n≥2时,由
| 1 |
| an |
| 1 |
| n2-n+2 |
| 1 |
| n(n-1)+2 |
| 1 |
| n(n+1) |
得Sn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
=
| 1 |
| 2 |
| 1 |
| 2×1 |
| 1 |
| 3×2 |
| 1 |
| n(n-1) |
| 3 |
| 2 |
| 1 |
| n |
| 3 |
| 2 |
∴Sn<
| 3 |
| 2 |
点评:本题考查不等式和数列的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目