题目内容
设函数f(x)=x2ex-1+ax3+bx2,已知x=-2和x=1为f(x)的极值点.
(1)求a和b的值;
(2)讨论f(x)的单调性.
解:显然f(x)的定义域为R.
(1)f'(x)=2xex-1+x2ex-1+3ax2+2bx=xex-1(x+2)+x(3ax+2b),(2分)
由x=-2和x=1为f(x)的极值点,得
(4分)
即
(5分)
解得
(7分)
(2)由(1)得f'(x)=x(x+2)(ex-1-1).(8分)
令f'(x)=0,得x1=-2,x2=0,x3=1.(10分)f'(x)、f(x)随x的变化情况如下表:(13分)
从上表可知:函数f(x)在(-2,0)和(1,+∞)上是单调递增的,在(-∞,-2)和(0,1)上是单调递减的.(14分)
分析:(1)根据极值点处的导函数值为零建立方程组,解之即可;
(2)求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,列出f'(x)、f(x)随x的变化情况,从而求出函数的单调性.
点评:本题是一道关于函数的综合题,主要考查函数的单调性、极值等基础知识,应熟练掌握利用导数求解函数单调的方法步骤等问题.
(1)f'(x)=2xex-1+x2ex-1+3ax2+2bx=xex-1(x+2)+x(3ax+2b),(2分)
由x=-2和x=1为f(x)的极值点,得
即
解得
(2)由(1)得f'(x)=x(x+2)(ex-1-1).(8分)
令f'(x)=0,得x1=-2,x2=0,x3=1.(10分)f'(x)、f(x)随x的变化情况如下表:(13分)
| x | (-∞,-2) | -2 | (-2,0) | 0 | (0,1) | 1 | (1,+∞) |
| f'(x) | - | 0 | + | 0 | - | 0 | + |
| f(x) | ↘ | 极小值 | ↗ | 极大值 | ↘ | 极小值 | ↗ |
分析:(1)根据极值点处的导函数值为零建立方程组,解之即可;
(2)求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,列出f'(x)、f(x)随x的变化情况,从而求出函数的单调性.
点评:本题是一道关于函数的综合题,主要考查函数的单调性、极值等基础知识,应熟练掌握利用导数求解函数单调的方法步骤等问题.
练习册系列答案
相关题目